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Power Allocation for a MIMO Relay System

with Multiple-Antenna Users

Yuan Yu and Yingbo Huakellow, IEEE

Abstract

A power allocation or scheduling problehis studied for a multiuser MIMO wireless relay system
where there is a non-regenerative relay between one access point and multiple users. Each node in the
system is equipped with multiple antennas. The purpose of this study is to develop fast algorithms to
compute the source covariance matrix (or matrices) and the relay transformation matrix to optimize
a system performance. We consider the minimization of power consumption subject to rate constraint
and also the maximization of system throughput subject to power constraint. These problems are non-
convex and apparently have no simple solutions. In this paper, a number of computational strategies
are presented and their performances are investigated. Both uplink and downlink cases are considered.
The use of multiple carriers is also discussed. Moreover, a generalized water-filling (GWF) algorithm is
developed to solve a special class of convex optimization problems. The GWF algorithm is used for two

of the strategies shown in this paper.

Index Terms

Network of MIMO links, medium access control, space-time power allocation, space-time power
scheduling, multiuser MIMO relays, convex optimization, non-convex optimization, generalized water

filling.
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former stresses the computation of the latter in advance.

January 23, 2010 DRAFT



. INTRODUCTION

Wireless relays are known to be useful to increase the coverage of wireless communications under
power and spectral constraints. A wireless relay can be regenerative or non-regenerative. A regenerative
relay requires digital decoding and re-encoding at the relay, which can cause a significant increase of
delay and complexity. A non-regenerative relay does not need any digital decoding and re-encoding at
the relay, which is a useful advantage over regenerative relays.

Recently, there have been many research efforts on non-regenerative MIMO relay systems [1], [2],
[31, [4], [5], [6], [7], [8], [9]. A non-regenerative MIMO relay applies a transformation matrix, also
called relay matrix, to its received signal vector and then forwards it to the next node. The MIMO relay
formulation in [3] includes the multicarrier relay problem in [10] as a special case. This paper continues
to address non-regenerative MIMO relay systems. In particular, we consider power allocation problems.
In the context of MIMO relays, a power allocation problem is about the determination of the source
covariance matrix and the relay matrix to maximize a system performance.

For a single-user two-hop MIMO relay system, an optimal structure of the relay matrix that maximizes
the source-to-destination mutual information was presented in [1] and [2], and an optimal structure for
both the source covariance matrix and the relay matrix was established in [3]. The optimality of this
structure, which is essentially a diagonalization or decoupling of the entire relay system into a set of
parallel scalar sub-systems, is recently established in [5] for a broader class of objective functions known
as Schur-convex or Schur-concave functions. Furthermore, this elegant structure is also shown in [6] to
be optimal for a multi-hop MIMO relay system of any number of hops.

For multiuser MIMO relay systems, however, the above mentioned property does not hold any more.
Finding the source covariance matrix and the relay matrix to maximize a system performance is generally
a difficult task. Prior efforts on multiuser MIMO relay systems are reported in [7], [8] and [9]. In these
works, each user is assumed to have a single antenna. Part of the reason for this assumption was to
simplify the problem. Additional references on MIMO relays can be found in [11].

In this paper, we focus on a multiuser two-hop MIMO relay system where each node is equipped
with multiple antennas. For this problem, not only the diagonal structure as shown in [1], [2], [3] and
[5] is no longer optimal, but also the uplink-downlink duality property shown in [12] and [9] no longer
applies. This makes the optimal power allocation a difficult task. Facing the challenge unsolved by others,
we will present a number of computational strategies to search for the best possible power allocation.

We will consider both uplink and downlink problems. We will also consider both system throughput
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maximizationand power consumption minimization. These algorithms are summarized in Table | and
discussed in detail in this paper. These algorithms are designed to solve the power allocation problems
more general than those treated before. In particular, for a problem treated in [7], our approach can yield
much better results than the approach developed there.

We assume that all channel matrices are known to a central scheduler and to the transmitters and
receivers if needed. Except for Algorithm 1, all other algorithms in Table | are not mathematically proven
to yield globally optimal results for their corresponding problems. However, Algorithm 1 is based on a
reformulation of the original problem, which essentially approximates the original hon-convex problem
by a convex problem. Because of this approximation, there is a significant penalty to the performance of
Algorithm 1 as shown later in Section VI.

We will also develop a generalized water filling (GWF) theorem and the corresponding GWF algorithm
to solve with global optimality a special type of convex optimization problems. The GWF algorithm is a
useful building block for two of the power allocation algorithms summarized in Table 1. In the literature
there are other types of algorithms also called generalized water filling. But they were actually designed
for different problems. Our GWF algorithm is a generalization of the conventional water filling algorithm
from single power constraint to multiple power constraints.

In Section Il, the GWF theorem is presented. In Section Ill, we treat a multiuser MIMO relay downlink
system. We present power allocation algorithms for maximizing the system throughput (i.e., sum rate)
under a power constraint, and power allocation algorithms for minimizing the system power consumption
under individual user rate constraints. In Section 1V, we deal with similar issues for the uplink case. In
Section V, we show how to apply our algorithms for joint multicarrier power allocation. In Section VI,
simulations results are presented to illustrate the performances of our algorithms. This study confirms that
power allocation affects the system performance significantly and developing fast algorithms for power

allocation is critically important.

I[I. A GENERALIZED WATER-FILLING ALGORITHM

Consider the following convex optimization problem:
i = —log I+ HQH" 1
min  J og I+ HQH"| 1)
st.  tr{B,QBf} <P, Vie{l...m}

whereH andB; are complex matrice<) is a complex positive semi-definite matrix, afdare positive

numbers. Without its base specifiddg has the natural base If m = 1, the solution to the above
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problemcan be found by a well known water-filling algorithm. It is a fast algorithm for this particular
case. Ifm > 1, however, there appears no fast algorithm available in the prior literature except for the
general purpose convex optimization programs such as the CVX package designed for Matlab [13]. We
now introduce a special purpose algorithm, referred to as generalized water-filling (GWF) algorithm, to
solve the problem in (1). The GWF algorithm is based on the following GWF theorem:

Theorem 1:The solution to (1) is given by:
Q=K VI-zHTviK! 2)

whereK = (3° mB{IBi)W (assumed to be non-singulal, and X are determined from the SVD

HK-" = UV, (\)* replaces all negative diagonal elements by zeros and leaves all non-negative

diagonal elements unchanged, gad- (1, - - , 1) are the solution to the following dual problem:
—log [T+ HQH” .(tr(B,QBH) — P,
max og|T+HQ |+;u(tr( QB/) - P, 3
s.t. Q=K VI-2")TVK

To our knowledge, this theorem is new. The proof of this theorem and an algorithm for computing
p are given in Appendices A and B, respectively. A complete Matlab script of the GWF algorithm is
available at http://www.ee.ucr.edyitua/GWF.pdf. As illustrated by a simulation example in Appendix
C, the GWF algorithm can achieve the same accuracy as CVX, and the former has a much faster speed
than the latter when the dimension @fis much smaller than that &. The GWF algorithm is useful for
more applications than those shown in this paper. For example, if one wants to design a source covariance
matrix to maximize the data rate of a MIMO link and also wants to keep the interference from this source

to other neighboring nodes under certain limits, such a problem can be directly formulated as (1).

1. M ULTIUSER MIMO D OWNLINK RELAY

We first consider the multiuser MIMO downlink relay system as illustrated in Fig. 1, wheye? >!
denotes the signal transmitted from the source equippedMitmtennasF € C**M the transformation
matrix performed by the non-regenerative relay also equippedMitmtennas, angl; € CV*! the signal
received by the userequipped withNV antennas. Furthermor#] € CM*M denotes the channel matrix
between the source and the rel&l; ¢ CV*M is the channel matrix between the relay and the user
andn, ny, ---, ng are the zero-mean Gaussian noises at the relay an& theers. Here, we assume
that all the users are equipped with the same number of antennas. The transmission from the source to

the relay is assumed to be orthogonal (in time and/or frequency) to the transmission from the relay to
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all users. We also assume that the direct link between the source and any of the users is very weak and
negligible.

Note that if the actual numbers of antennas at the users, relay or source are different from what is
described above, we can always add imaginary dummy antennas to make up the niirobé¥. The
effectiveH € CM*M or H; € ¢V*M may have zero rows or zero columns, which however do not affect
the expressions of our results.

The signaly received at the relay, the signaltransmitted from the relay, and the signalreceived

by the useri can be expressed as follows:

r = Fy=FHx-+Fn (5)
y; = H;r+n;, =H,FHx+ H;Fn + n; (6)

If n has a covariance matri,,, we can WriteCEI/Qy = C;l/QHx + C;l/Qn where the noise term
C;l/zn has the covariance matrix equal to the identity matrix. So, provided that the noise covariance
matrices ofn andn; are known, we can assume for convenience that they are the identity matrices. We
now defineHZ = HY,... HY), yH = [y ... yi]andnl’ = [nf,... nlf]. Then, using (6) for all

1, we have
ye = H.FHx + H.Fn + n, (7)

This is an effective channel model between the source and all users.

A. Maximization of Sum Rate under Power Constraint and ZFDPC (Algorithms 1-2)

The problem of maximizing the sum rate for all users under a power constraint for the downlink case
was considered in [7] where each user has a single antenna. The authors also assume the use of zero
forcing dirty paper coding (ZFDPC) [14]. We now extend the approach in [7] to users with multiple
antennas.

Define the QR decomposition of tHéN x M matrix H, asH. = RQ, whereQ is anM x M unitary
matrix (which is not the same@) in section IlI) andR is a KN x M lower triangular matrix. Define the
SVD of the channel matri#l asH = U,X, V whereX;, = A,l/2 = diag(M1, Mn2s -« Ann) /2
with descending diagonal elements, ddg and'V;, are unitary.

We assume that the source precoder generates A, s wheres contains i.i.d. symbols of unit

variance andA, is such that the source covariance matridls = E{xx} = A,All = VA,V
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with A, = diag(Ap 1, Ae2, -+, Az,mr). We also assume that the relay matrix is constructed as
F=Q's,Ull, s, =A/=diag\r1, Mo, M)/ (8)

Here, the source covariance matrix is matched to the right singular vectors of the channelHnaknix
optimality of which for a single user relay system is shown in [3]. The relay matrix here is matched to
the left singular vectors dfl and the unitary matrixQ of H., which is adopted only heuristically without
proof of optimality. As mentioned in [7], the matr&® is also affected by column permutations Ht,

which can be further optimized. With the above structures of the precadesind the relay matrid¥,

(7) becomes
Ye = szzhs =+ (szﬁ + nc) (9)

wheren = Ufn. Note that each element &f represents a scalar stream of data. SiRcés lower
triangular, it is clear from the first term of (9) that the interference from strgdamstream for j > i
is now absent. To remove the interference from strgata streami: for j < i, we can use the dirty
paper coding (DPC) starting from the first stream that corresponds to the first elemeit (). For
the first stream, there is no interference from other streams and the conventional coding is applied. For
the second stream, there is the interference from the first stream which is however known to the encoder.
With DPC, the interference from the first stream to the second stream can be virtually eliminated. The
same principle applies to the remaining streams. Then, with DPC, the effective signal to noise ratio for
the ith data stream is

|Riil*Afidn,ide,i
Sy [RijPApy 41

where R; ; is the (i, j)th element ofR. Note that the use of DPC has removed the mutual interference

SNR; = (10)

between the elements ef But the first term (the sum) in the denominator of (10) is due to the noise
forwarded from the relay. The above interference cancellation method based on the QR decomposition
and the DPC is known as zero forcing dirty paper coding (ZFDPC) [14].

The problem of maximizing the sum rate of this downlink relay system under ZFDPC can now be

formulated as

KN
pax A Z logy(1 4+ SNR;) (11)
s.t. tr{A;} < P, (12)
tr{A;(ApA, + 1)} < Py (13)
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wherethe power constraint (12) is for the source, and the power constraint (13) is for the relay. In [7],
the problem (11) is solved by a geometric programming under a high SNR approximation, which will
be referred to as Algorithm 1. Note that a weighted sum rate can be used for all sum rate maximization
algorithms. But for convenience, we choose the unit weights.

Next, we present an algorithm without the high-SNR assumption, referred to as Algorithm 2. We will
search forAy and A, in an alternate fashion, where each cycle of the alternation is as follows.

1) Source optimization with fixed ;. It is easy to verify that with any fixed s, the problem (11)
is a special case of the problem (1) shown in Section Il, and hence the optimedn be found by the
GWEF algorithm.

2) Relay optimization with fixed,: With any fixedA, the optimalA ; can be found by maximizing

the following penalized function of (11):

KN
. |Riil*Afidn,ida,i 1
I (Af) B Zlog? <1 i Zi' 1 \R'j 2)\fj +1 + t log | Py — Z)\f’i(Ah’i)\x’i +1)
) 1= ,, P i

where the second term is the logarithmic barrier function [15] associated with the constraint (13). For

(14)

convenience, we will also writd (Ay) = Li (Ay) where Ay = diag(A¢). The gradient ofL; (Ay)
with respect toly, denoted byVL;(Ay), is easy to derive, which is omitted. Following the Armijo’s

rule [16], the search algorithm fox; is as follows:
A = AW 4 o (AW (15)

wherem is the smallest integer satisfying

(W) - n (W) > o |vref] a9

Pf—Z)\'Jﬁjl(/\M)\m—i—l) > 0 (17)
and0 < o0 < 1 and0 < § < 1. After convergence of the above search for a fixed new search is

started with an increased When1/t becomes small enough, the searchAgris considered completed

for the givenA.,.

B. Maximization of Sum Rate under Power Constraint and DPC (Algorithm 3)

ZFDPC is a scalar DPC, which is suboptimal compared to the vector DPC [12], [14], [17]. From now
on, the vector DPC will be referred to as DPC. Given that Eheisers receive independent messages
from the source, we can write the transmitted vector from the source -asx; + --- + xx and its

(source) covariance matrix dd, = Il; + --- + IIx wherelIl; is the covariance matrix of the signal
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x; meantfor useri. Assuming the use of DPC in the descending order starting from kisere., the
interference from useyj to user: for 5 > ¢ is virtually absent, the achievable data rate for user

bits/s/Hz is given by
‘H-FH (Sic T, HYFHHY + HFFPHY + I‘

I;; = logy (18)

’H FH (Y)2) 1) HYFPHY + HFFTHY + I‘
With any given set of the source covariance matritgsfor ¢ = 1,2, ..., K, a complete design of the
vector DPC to achieve the rates in (18) can be made by following [17].

In the absence of total power constraint, the maximum possible data rate farigsedependent of

IT; for j > ¢ because of DPC. We can formulate the following problem:

1
/{I;?Ki sum d = Z Id , ( 9)

s.t. tr{Il,} < Px (20)

tr{F(HIL,H” + HF7} < P; (21)

A joint gradient search oF, I1y, - - -, ITx can be performed directly to maximize the following penalized
function of (19):
Loy(F,Aq,--- A Z I+ — log —tr{Il,}) + — log (Pf — tr{F(HHxHH + I)FH}) (22)
where A, is such thafll; = A;A. We can denote all parametersih A4, --- , Ax by a single vector

p, and the gradient of., with respect top by VLs(p). Similar to the case of (14), there are two loops
in the search. The inner loop is for a fixed pair(6f, t2) where the Armijo gradient search is conducted
until the norm of VLy(p) is small enough. The outer loop corresponds to the increasg af) until
they are large enough.

To show an explicit expression &F L (p), it suffices to derive explicit expressions %% and gf‘f_

asfollows. Following the rules of matrix differentials [18], we can show

Ly  NOlu; 2 F(HILHY +1) 23)
oF —~ OF 1 Py — tr{F(HILLHY + T)F/}
0Ly  \NO0lai 2 A 2 HYFHFHA, 24)
OA; — 0A; P, —tr{Il,}  ty Py — tr{F(HO,HH + )FH}
where the derivative of L, with respect to the complex matrik is defined as% = 8]?6L{F} +
jazﬁf{ZF}’ and the same applies @L To derive 8“ and gﬁ , we first defineX; andY; according
to (18) such thatl/;; = log2% . Then, usmgalog|X\ = tr{X"10X} [18], we havedl,;; =
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(logy e)tr {X;laXi -Y, 18Yi}. It is easy to derive the differentials &; and Y; with respect to

the matrixF. Applying the resulting expressions into the above expression, it follows that

814; = 2(logy e)Re (tr {HEX'M;OFH — HAY; 'N;oFH}) (25)

whereM, = H;FH (Y)_, I ) HY + HJF andN; = H,FH (¥)2) TI; ) HY 4 HiF, and therefore

0811;‘2" — 2(log, €) (HIX;'M; — HIY'N;) (26)

Similarly, one can verify that foj <i — 1,
gﬁ’; = 2(logye) (HAFHHY (X, — Y, !)H,FHA;) (27)
and forj = i, 33+ = 2(logye) (HFYH/X;"H;FHA;), and forj > i, 33+ = 0. The above

algorithm is referred to as Algorithm 3.

C. Minimization of Power under Rate Constraint (Algorithms 4-5)

We now address minimization of power under rate constraint. The total power consumed by the source

and the relay is
Py = tr{IL,} + tr {F (HILLH" + I) F"} (28)
Our problem now is to minimize the total power consumption subject to rate constraints:

min Py (29)

JIq e 7HK

subjectto Iy, > R; Vie {1,2,--- K} (30)

where R; is a desired data rate for uselin bits/s/Hz. To solve this problem, we can search for the
optimal relay matrixF and the optimal source covariance matri€gs - - - , Ik in an alternate fashion,
where each cycle of the alternation is shown below.

1) Source optimization with fixd®: We now assume a fixeéll and present an algorithm for computing

the optimalIly, - -- ,IIx. We will use the property thak;; is independent oIl q,--- ,IIx and is a

concave function ofI;, and P is a linear function offI;,--- ,IIk. It follows from (28) that
K
Py=>) tr{Qi} +tr {FF7} (31)
i=1
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10

where Q; = (I + HIFI/FH)?/211,(1 + HYFYFH)'/2, and we have appliedr(AB) = tr(BA).

Clearly, Q; andII; are one-to-one mappings of each other. We now define

G: = H;FH (I+HF/FH) " (32)
i—1 !

S;i = GI'[G)> QG +HFF'H +1| G, (33)
7=1

whereS; depends orQQq,--- ,Q;_1 but not any ofQ;,--- ,Qg. Then, it follows from (18) that

where we have applielbg |[AB + I| = log |BA + I| with AB being conjugate symmetric.

Based on (31) and (34), the optimal solution to the problem (29Qforconditional upor¥', Q1,--- , Q;_1,
is given by the standard water filling solution. Namely, if the eigenvalue decompositiSnisfdenoted
by Si = Y"1, Aiuguf where);; > 0, then the optimal choice a®; is Qi = >, (vi — ﬁ)*ui,lu{fl
where (z)* = max(z,0) andv; is such thatl;; = R;. (Note: In order to keep the solution inside the
interior feasible region to ensure a good convergence behavior, we should dhea$ightly larger than
R;.) Furthermore, with a fixed', the optimal solution foiQ.,--- ,Qx (and hencdl,,--- ,TIx) can
be obtained one at a time sequentially by starting Wkh

2) Relay optimization with fixefll|,--- ,IIx: We now assume thdil,,--- ,IIx are fixed. To find

the optimalF, we can use the gradient method to minimize the following penalized cost of (29):
1
Ly =Py~ Z log(Ig; — Ri) (35)

where the second term is the barrier, and bgjland,;; are functions off'. With the gradient%%, also
denoted byV L3(F), the Armijo search algorithm for the optimBlis F(*+1) = F(*¥) — gmy L(F*) where
m is the smallest integer such thag(F*¥)) — L3 (F*+1)) > o5™||VLy(F*)||? andI;; (F*+D) — R; >
0,Vie {1,...,K} where0 < 3 < 1and0 < ¢ < 1. Note that the second conditidp,; (F*+1) - R; >
0 is important to ensure that none of the rate constraints is violated. In fact, for good convergence behavior,
for both the source optimization and the relay optimization, we need to Ke&p,,--- ,I1x strictly
inside the interior feasible region of the problem.

The above algorithm for power minimization is referred to as Algorithm 4. Alternatively, we can solve
the problem (29) by a joint gradient search similar to Algorithm 3, which will be referred to as Algorithm

5.
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IV. MULTIUSER MIMO UPLINK RELAY

A multiuser MIMO uplink relay system is illustrated in Fig. 2, where we denotdldy € CM*V the
channel matrix from usei to the relay, and byH” ¢ CM*M the channel matrix from the relay to the
access point. Then, we write the received signal at relay as

K

=1
wherex; is the signal transmitted from usgérandn,. is the white Gaussian noise at the relay. The signal

transmitted from the relay is
r=Fy, (37)
whereF! is the relay matrix. The signal received at the access point is
Yo = Hr + n,

K
= HYF"Y H'x,+ H'Fn, +n, (38)
i=1
wheren,, is the white Gaussian noise at the access point. We assume the use of successive interference

cancellation (SIC) at the access point, starting from useihis means that the interference from user

1 to userk for i > k is virtually absent, and hence the achievable data rate foriuger

’HHFH (Ch, HYTLH,) FH + HYF/FH + 1]

Iu,k = IOgQ ’ (39)

HAFH ()] HITLH, ) FH + HYFHFH + I)

whereIl; = E{x;x}.

A. Maximization of Sum Rate under Power Constraint (Algorithms 6-7)

The problem of maximizing the sum rate from all users under power constraints is formulated as

follows:
K (HHFH (Z/ HITLH, ) FH + HYF/FH + I
ey, e = ; Lui = log, [HIFHFH + 1] (40)
st. tr{IL} < P.Vie{1,2,-- K} (41)

K
tr {FH (Z HITLH,; + 1) F} < Py (42)

=1
Note that the sum rate of the uplink case is independent of the order of SIC, which is unlike the sum
rate of the downlink case with DPC. To solve this problem, we can optimize eaEhldf, - -- ,IIx in

a cyclic fashion. The basic components in each cycle are shown below.
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1) Source optimization with fixed relay and other sourcHsall F,I14,--- ,IIk, butII;, are fixed,
we can define: = log, [HYF#FH + I| and

K
G, =H'F"( Y HIILH, | FH+H'F'FH +1
j=1,5#i

which are independent dfl;. Then, we can write
Rsum,u = log, |Gz + HHFHHlHanlFH‘ —c
— log, ‘1 T G;1/2HHFHHfIHZ-HZ-FHG;H/2) +1logy |Gi| — ¢ (43)

The power constraint (42) is equivalent to
K
tr {FPHIILH,F} < Py —tr { FH Z HITLH; +1| F
j=1,j#i
It should be clear now that with respectlifh alone, the problem (40) is equivalent to the convex problem
(1) which is solvable by the GWF algorithm.

2) Relay optimization with fixed sourcel:I1y, - - - , IIx are fixed, then the problem (40) with respect
to F alone is similar to a problem solved in [3], the solution of which is stated below. Define the SVD
of H asH = U, %, VI whereX;, = diag(oy,- -+, o) With descending diagonal order, and the EVD
of R = Zfil HfIHZHZ asR = E,,ATE{{ where A, = diag(A1,- -+, Ay) With descending diagonal

order. Then, the optimal structure Bfis given by
F=EX;U/ (44)

whereX; = diag(fi, ... , far)'/? > 0 which are to be determined. With (44), the problem (40) becomes

M 2 2
oiNifi+oifi+1
max R = lo L L 45
frofa ; S (49)

M
s.t. Z(Az +1)fi <Prandf; >0 Vi
=1
Then, by the KKT method [15], we have

1 5 *
i = 5 VA +4NioZn— A —2 4
f. 2020+ N [ AP+ ANoT e — A ] (46)

wherey is such that

M 1 +
> 57 {\/)\f + Ao — N — 2] = P;.
i=1 "1
The above algorithm that searches 1O/I1,, - - - ,IIx in a cyclic fashion is referred to as Algorithm

6. Note that each component in Algorithm 6 is a convex optimization. Alternatively, we can solve the
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problem(40) by a joint gradient search ovéy, I1,, - - - ,IIx simultaneously, which will be referred to
as Algorithm 7. The details of Algorithm 7 are omitted because of its similarity to other joint gradient

search algorithms.

B. Minimization of Power under Rate Constraint (Algorithms 8-9)

The total power consumption for the uplink case is:

K K
Py = tr{TL} +tr {FH (Z HATLH, + I) F} (47)
=1 =1

With the assumption of SIC, the individual rafg; for user: is given by (39). Hence, the problem is

formulated as:

A, P “
s.t. Iu,i > R;, Vi € {1,2,...K} (49)

The problem (48) can be solved by a joint gradient search algorithm (Algorithm 9) which is omitted, or
an alternate optimization algorithm (Algorithm 8) as shown below.

1) Source optimization with fixed relayince the order of the SIC is froff to 1, I,,; is independent
of IT; 44, ..., Ik, which is a property also shared in the downlink case. With fikedll,,--- ,II; 1,
the optimalIl; can be found by a convex optimization same as in section IlI-C1.

2) Relay optimization with fixed source§iven Iy, --- ,Ilg, the optimalF can be found by the
following gradient method. Define the following cost with a barrier:

K
1
Ly =tr {FH (Z HATLH, + I) F} - > log(Iu; — Ri) (50)

i=1
It follows that

8L4
— =2 H ILH, +1]|F — 1
(Cmmm eyt o (1)
To derive 85;_;7‘, we first rewrite (39) ad,; = log, ||W ' B Similar to the derivation of (26), it can be
shown that
Ol ; —1yrH ~1 fpH
op = 2(logz¢) (C;wW;'H" — C,_.,W, ' H") (52)

whereC; = (I + Eg‘le HijHJ) FH. The rest of the algorithm is the same as in section 11I-C2.
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V. MULTI-CARRIER EXTENSIONS

In the previous sections, we have assumed that there is a single carrier for power allocation. If one
wants to useM,. (orthogonal) carriers for joint power allocation, the previously shown algorithms are
also applicable after the following changes of notations are adopted.

For the downlink case, the signal models shown in (4)-(6) hold except that

x =[x, x(M)T]" e MM (53)
y = [Y(DT?'” 7Y(MC)T]T S CMMCXl (54)
n = [n(l)T7 e 7n(Mc)T]T S CMMCXI (55)
H = diag[H(1), -, H(M,)] € CMMxMM. (56)
r = [I‘(l)T’ e ?r(MC)T]T € CMMCXl (57)
yvi = [yviD)T, - yi(M)T]" e cNMxt (58)
n, = [ni(l)T, s ,ni(Mc)T]T e CNMCXl (59)
H;, = diag[H;(1),--- ,H;(M,.)] € CNMxMM. (60)

andF ¢ CMM:-xMM. ‘\where for examples(m) denotes the signal transmitted from the access point on
the mth carrier. Note that the optim& is not necessarily block diagonal. In other words, the relay may
use a different carrier to forward a stream of data that was received by the relay on another carrier [10].
Good (if not globally optimal) choices & along with the source covariance matrices at all carriers can
be determined by any of the power allocation algorithms. For the uplink case, the signal models shown
in (36)-(38) also hold after a similar change of definitions of the notations.

These notational changes do not affect any of the algorithms shown in this paper as long as the power
constraint is for the sum power over all carriers and the rate of interest is also the sum rate over all

carriers. However, the complexity of these algorithms will increase because of the increased dimensions.

VI. SIMULATION RESULTS

For convenience of reference, all algorithms presented in Sections Ill and IV are summarized in Table
I. For the simulation examples shown below, a sample set of computational times of all algorithms for a
random channel realization and a random initialization are listed in the last line in Table I. All algorithms
have roughly the same speed except Algorithm 1 which uses CVX and is much slower than others for

a single run. Algorithm 1 uses geometric programming as proposed in [7], for which the GWF is not
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applicable However, unlike other algorithms, Algorithm 1 is globally convergent and needs no multiple
runs associated with multiple initializations. When multiple runs are considered for other algorithms, they
may become effectively slower than Algorithm 1. However, one can use the result from Algorithm 1 (for
down link only) as an initialization for Algorithm 2 for a new research, which will be further discussed
later.

Next, we show simulation examples to compare these algorithms. We assume that there are two users
K = 2, each user is equipped with two antennsis= 2, the relay and the access point are both
equipped with four antenna&/ = 4. A single carrier is assumed. Each of the channel parameters is
realized independently using a complex Gaussian distribution with zero mean and unit variance. As
assumed throughout this paper, every entry of the noise vectors has zero mean and unit variance. The
performance in terms of either the sum rate or the total power is based on an average over 50 channel
realizations. Our experience with 100 or more channel realizations did not lead to any significant change
of results. Unless mentioned otherwise, the search conducted by each algorithm (except Algorithm 1
which is globally convergent) was initialized randomly, 20 random initializations were chosen for each
realization of channel matrices, and the best result from the 20 initializations were selected for computing
the performance. We have found that the performance difference between the “best” and “worst” from 20
initializations can be up t@0%. In general, the more initializations are used, the better is the chance the
optimal solution is found. But the computational cost increases as the number of initialization increases.

Figure 3 compares the averaged sum rates achieved by the downlink Algorithms 1-3 versus the relay
powerP;. The power at the source is fixed/at = 1. Algorithm 1 is based on the geometric programming
proposed in [7]. Both Algorithms 1-2 are based on ZFDPC while Algorithm 3 is based on DPC. For
Algorithm 2, there are two curves in this figure. For the lower curve, we used the results from Algorithm 1
as initializations for Algorithm 2. For the upper curve, we used random initializations. We see that except
for the region of small relay power, Algorithm 1 yielded the least sum rate among the three algorithms
while Algorithm 3 yielded the largest sum rate. In theory, Algorithm 3 should yield the largest sum
rate for the entire region of relay power if a global optimum (including the optimal ordering of the
DPC) is achieved. This figure suggests that in the small relay power region, Algorithm 3 was trapped
in unfavorable local minima. Since ZFDPC and DPC are different coding schemes, the results from
Algorithms 1-2 cannot unfortunately be used as good initializations for Algorithm 3. The complexity of
DPC is much more complex than that of ZFDPC.

Figure 4 compares the averaged total power consumption required by the downlink Algorithms 4-5

versus individual rate constraint. Also shown in this figure is the power consumption based on the identity
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relay matrix, i.e., F = I, while the source covariance matrix is optimized by the source optimization
subroutine in Algorithm 4. Algorithm 4 uses cyclic search while Algorithm 5 uses joint gradient search.
The search directions for cyclic search are more limited than the joint gradient search. We see that when
the date rate is high, the difference of power consumption is very large. The power consumption from
Algorithm 5 is the least, i.e., the best.

Figure 5 compares the averaged sum rates achieved by the uplink Algorithms 6-7 versus the power
constraint at the relay. The source power is fixedat 1 for all 7. It turns out that the two algorithms
yield the same results. The relay optimization and the source optimization in Algorithm 6 (which is
cyclic) are both convex, and Algorithm 7 uses the joint gradient search. The lower curve in this figure
is based on the identity relay matrix, i.&,= I, while the source covariance matrices of all users are
optimized by the source optimization subroutine in Algorithm 6.

Figure 6 compares the averaged total power consumption required by the uplink Algorithms 8-9 versus
a common data rate of all users. Also shown in this figure is a curve based on the identify relay matrix,
i.e., F = I, while the source covariance matrices of all users are optimized by the source optimization
subroutine in Algorithm 8. In this case, the joint gradient search by Algorithm 9 yields better results than
the cyclic search by Algorithm 8.

Finally, Figure 7 illustrates an effect of joint multi-carrier power allocation. Here, the relay system is
for downlink, there are two users(= 2), each user has two antennd$é £ 2), there are four antennas
at the relay node and four antennas at the access puint(4), and there are two carrierdf. = 2).
For each of the two carriers, an independent channel realization was made. The first top curve is the sum
rate over two users and two carriers, which was obtained by the joint multi-carrier power allocation. The
second top curve is the sum rate over two users and two carriers, which was obtained by two separate
single-carrier power allocations. The bottom two curves are the sum rates each summed over the two
users for carrier 1 and carrier 2, respectively. The total power for the two carriers used for the first curve
is twice that for each carrier used for the other curves. The power per carrier is the same for all curves.
We see that there is an improvement of the sum rate by using joint multi-carrier power allocation, which
is expected. However, the improvement is not large. It is known that the distribution of the singular
values of a matrix of i.i.d random variables hardens (becomes invariant) as the dimension of the matrix
increases [19]. Hence, if the number of antennas at each node becomes large, the improvement from the

joint multi-carrier power allocation is expected to disappear.
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VIl. CONCLUSION

In this paper, we have developed several computational strategies for a multiuser MIMO relay system
where each node may be equipped with multiple antennas. The complexities of these algorithms are
about the same, but their performances can be very much different. Although the central problem is
non-convex, the joint gradient search for the relay matrix and the source covariance matrices, with
multiple random initializations, has consistently yielded the best result. The use of logarithmic barrier
functions, which is a key approach of the interior-point optimization methods, has been very effective
for constrained optimizations. But for one case, the cyclic (or alternating) search for the relay matrix and
the source covariance matrices yielded results similar to those by the joint gradient search. The GWF
algorithm shown in this paper is a faster alternative to the CVX algorithm (or package) to solve the
convex problem (1). In applications with practical coding methods, the rate-versus-power model of each
link may need to be revised with simple penalty factors while the power allocation algorithms shown in
this paper are still applicable. This paper has shown that fast algorithms for power allocation are very

important to achieve the full potentials of MIMO relay systems with multiple-antenna users.

APPENDIXA

PROOF OF THEOREM1

For anyQ > 0 (i.e., positive semi-definite), we can wri@ = AA whereA is a full column rank
matrix. With respect taA , we can write the following Lagrangian function of (1):
L=—log|I + HAA"H"| +> " (tr {B,AA'Bf'} - P) (61)
=1
The gradient ofL. with respect toA can be found by usinglog|X| = tr(X10X), 9(XX) =
(0X)XH + X9X*H and other basic tools [18]. The result is

oL . oL oL
OAH ~ 9Re(A)T 7 aIm(A

7= —2AH (HH (I+ HAAHHH)‘1 H - ZuiBfIBi> (62)
=1
Then, the complete K.K.T. conditions [15] of the problem (1) with respecA toan be written as

_Af (HH (I+HAAPH) ' H - i 1iBH BZ-) —0 (63)
tr {BiAZAL B/} - P, <0 (64)

i >0 (65)

i (tr {B;AAPBI} — P) =0 (66)
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where: =1,--- ,m.

Although the problem (1) with respect tA is not convex, we now show that the generalized KKT
conditions [15] of the problem (1) with respect @ > 0, which is convex, are equivalent to (63)-(66).
ConsiderL as in (61) withAA¥ replaced byQ. It follows that

oL H H\—1 - H
— =-H" (I+ HQH H+ iB;" B 67
5q (1+HQH") ;H (67)
We define a vector operator for a complex conjugate symmetric matrix as follows:
R
vec(q) = | Vet
vee(Im{Q})

Here,vec(Re{Q}) stacks up all elements frome{Q}, andvec(Im{Q}) stacks up all elements from
Im{Q}. AssumeQ € C™*™. Then,vec(Q) € R*"*!. Now, based on (5.95) in [15], we have the

following sufficient generalized KKT conditions:

vec (—HH (I+HQH")'H + Em: puBY BZ-) —w=0 (68)
=1
tr {B;QBf} - P, <0 (69)
pi =0 (70)
wi (tr {B;QB{'} — P,) = (71)
wlvece(Q) =0 (72)
wherei =1,--- ,m, w e R¥*1 Also,Q € K = {Q' | Q' > 0}, andw is in the dual cone oK, i.e.,

w e KP = {w|wTvee(Q') > 0V Q' > 0}. The term—w in (68) is due to the constraintQ < 0, for
which we have useggfi% =1

Note that for any two complex conjugate symmetric and positive semi-definite matAitesnd
B/, the following equations are equivalenA’”’B’ = 0 < tr(A’”B') = 0 < Re{A’}TRe{B'} +
Im{A"YIm{B'} = 0 < vec(A")Tvec(B’) = 0. It is then easy to show, similar to Example 2.24 in
[15], that K = KP. Then, as long a% >0 andQ = AAY, we have that (68) impliess € K, (63)
implies (72) and vice versa. On the other hand(% > 0 doesnot hold, thenw € X does not hold
because of (68). Therefore, if and only% > 0, (63)-(66) are equivalent to (68)-(72).

Next, we construct an optimal structure @f based on (63). SincKK = S wBEB; andK is

non-singular, (63) is equivalent to

_AHMK (K—IHH (I+HK YK AAPKK'HY) " HK ¥ — I) —0 (73)
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Definethe SVD of HK
HK 7 —usvi —yu [ > (vi v )H (74)
39
whereU andV are square unitary matriceX,; (square) an®, (possibly non-square) are diagonal, all
the diagonal elements d; are larger than one, and all the diagonal elementXgfare less than or
equal to one. We now assume ti&t’ A = V; T whereT is non-singular. Then, (73) is equivalent to

the following:

~A"K (KB (1+ HK 7K"Y AAPKK ') HK ¥ - 1) =0

L& _pHyH (VET "1+ usvAv,TTAvVEVETUY) T usvy - I) =0
—1
& _rH > Tt (% 0)] =-(10)|Vi=0
L _H (21 0 (TTH)’1+E%)_1(21 0) 2—(1 0) v =0
L (((m Hrr) Tz (22 0 ) - (1 0)) V=0
L w2 w2 ((TTH)_ +2$) 2 1=0
L w2 os (32— 5 (T + 37 T w2 1= 0
L ppi 1 w2 (75)

where for(c) and (f) we used the matrix inverse lemma. We see that sif@’ =1 — ;2 > 0, the
above solution fofT', and hence the correspondidg is a valid solution.

The above solution oK A has the same span A5,. A simple observation of the above analysis
also suggests that as long as the sparKéfA belongs to that ofV;, a matrix T exists such that
K7 A = V| T satisfies (73) wherd’/ is a sub-matrix (selected columns) ¥f,. On the other hand, if
the span ofK” A contains a vector fronVs, i.e., KA = V,T whereV}, has a column vector from
V5, then there does not exist such a matffixfor A to satisfy (73), or equivalently the corresponding
“solution” TT* would be non-positive semi-definite which contradicts to the fundamental nature of

TTH. Therefore, the highest rank solution &f to satisfy (73) is given byA = K—V, T where
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T = (I — 21‘2)1/2. Equivalently, the highest rank solution €f to satisfy (73) is given by
Q = AAY K v, TTHVIK!
= K Hv,1-=)VIiK!
= KHvI-xz)tviK! (76)
where X272 = (£7%)71, the inverse of a zero (squared singular value) would be treated as positive

infinity, and (I — X~2)* applies(x)™ = max(x,0) on each diagonal element of itself.

With (76) and (67), one can verify that

L —1

oL gy -7 (1+3(1-372)"5") =) ViKi >0 (77)
0Q
Note that theith diagonal element of the diagonal matrix betwdérand V¥ in (77), denoted byl;, is
di = 1-o? (1+ o(1— UZ._Q)Jr)_l

1-02>0 ifo? <1
— (78)

0 if 01-2 >1

whereo; is theith diagonal element oE. If we did not use the highest rank solution 1@ as in (76),
then there would be d; = 1 — 07 < 0 associated with @? > 1 and hence (77) would not hold and
hence the corresponding from (68) would not belong taC”.

With the optimalQ given in (76), which is a function oft = [u1,- -, tm], the remaining problem
is to find the optimalu. Since the effective KKT equations fqr are the same for both (63)-(66) and
(68)-(72), the optimajs can be found by using either the dual problem of (1) with resped tor the
dual problem of (1) with respect . Choosing the former, we can find the optimalby solving (3).
The dual problem of (1) with respect @ is the same as (3) except for the additional teroec’ (Q)w
which is however maximized to zero hy for any u.

The proof of the theorem is completed. In the next section, we show how to find the optiinal
more details. For the primal problem (1), has2n? real elements. (Even under the constr&ane QY
Q has% free real-part eIementsﬁ‘(”Qi_l) free imaginary-part elements, and hence totalfree real
elements.) For the dual problem (3), there areeal variables inu. If m < n?, it is reasonable to expect

the dual problem to be less costly to solve.
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APPENDIX B

COMPUTATION OF THEDUAL PROBLEM IN THEOREM 1

Since the dual problem is convex, we can follow the interior-point method [15] and define the following
dual function with logarithmic barrier terms:
m
1
D(p) = ~log [T+ HQ(uH"| + > i(tr(BiQ(u)B') = P) + 1 > log i (79)
=1 %
wherewe useQ(u) to stress thafQ is a function of . Note that the first two terms in (79) equal
to ming>o L, which we want to maximize subject @ > 0. For each choice of, we can apply the

Newton’s method [15] to find the optimal, i.e.,
p D = ) 4 (V2 D(u®)) "D (™) (80)

where k denotes the iteration index and the scajéf is determined by the backtracking line search.
Upon convergence for eaah we can increase by a factord > 1 and continue a new cycle of the
Newton’s search. The above process continues wytiis smaller than a pre-specified numler

The computation of the gradient vectdD (%)) and the Hessian matri?D(u*)) is straightforward
although the detailed expressions are lengthy. S@¢a) depends on the eigenvalue decomposition of
K 'H"HK # and the computation &K = (3", MBfIBi)l/2 also needs the eigenvalue decompo-
sition of Y- | ;B B;, we need to use the first-order and second-order differentials of eigenvalues and
eigenvectors. The basic formulas for these differentials can be found in [18]. The detailed expressions of
the gradient and the Hessian are omitted to save space.

To avoid possible numerical problems in computing the differentials of eigenvectors when there are
multiple identical eigenvalues, we added a small random perturbation mathx;tq wBEB,; in our
program, which proved to be very effective. A complete Matlab script of the GWF algorithm is available

at http://www.ee.ucr.ediyhua/GWF.pdf.

APPENDIXC
A COMPARISON OFGWF AND CVX

To show a comparison of our GWF algorithm with CVX in [13], we ran both algorithms on a desktop

with 2.40GHz CPU. We chose?, = 1, P, = 1.5, B; = I, and used the complex Gaussian distribution
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with zero mean and unit variance to randomly choose each element in the following matrices:

—0.670540.3791¢  0.1469 + 0.4499: —0.2913 — 0.3867¢  0.1568 — 0.0536¢

H — 0.2398 — 0.3460¢  —0.0702 — 1.06157 —0.4482 4 0.0759: —1.0125 + 0.50677%
—0.8170 4+ 0.3401¢ —0.5652 4 0.1424:  0.1243 — 0.1684¢  0.2645 — 0.2377¢
—0.7213 — 0.53637 —0.1463 — 0.3667¢ —0.7448 + 0.4854¢  0.1717 + 0.0345¢
0.1993 + 0.1027¢  —0.6859 + 0.42807 0.1457 4 0.3800z  0.2031 + 0.5548:¢

B, — 0.5582 4 0.2944:  —0.3429 — 0.4255¢ 0.5535 — 0.8565¢  0.6080 — 0.5549¢
0.3102 — 0.1320¢  0.1658 4+ 0.4059:  0.1225 4 0.7685¢  0.7242 4 0.1927¢

—0.1438 +1.2477¢  —0.4989 4 0.3501z 0.0825 — 0.80497 —0.5126 + 0.4826¢

For the GWF algorithm, the initial elements pf® were randomly chosen between zero and?. We
choseVD(u)"(V2D(u))~"'VD(u) < 1072 as the stopping criterion for the inner loop (for fixed
We also chose”) =2 andt(+) = 2¢() and finally2/t < 10~* as the stopping criterion for the outer
loop. We noticed that for each the inner loop converged after about 8 iterations.

At the convergence, the following results from the GWF algorithm and the CVX algorithm were

obtained:
0.3726 0.1804 — 0.06347  0.0470 — 0.0795¢ —0.1740 — 0.0078z
B 0.1804 + 0.06341 0.2722 —0.0779 — 0.13817 —0.1265 — 0.1644¢
Qawr = 0.0470 +0.0795¢  —0.0779 4 0.1381¢ 0.1643 0.0893 + 0.0208¢
—0.1740 4+ 0.00787 —0.1265 + 0.1644%  0.0893 — 0.0208¢ 0.1909
0.3726 0.1804 — 0.0634:  0.0469 — 0.0796: —0.1739 — 0.0078¢
B 0.1804 4 0.0634¢ 0.2722 —0.0779 — 0.1382¢7 —0.1265 — 0.16441¢
Qovx = 0.0469 4+ 0.0796:  —0.0779 4 0.13822 0.1643 0.0894 4+ 0.0208¢
—0.1739 + 0.0078; —0.1265 4 0.1644:  0.0894 — 0.0208: 0.1909

These two matrices agree with each other very well. Both GWF and CVX achieve the same value of
capacity 2.6139 in bits/s/Hz (i.esJ in (1)). But GWF took 3.40 seconds while CVX took 14.94 seconds.
GWEF is about four times faster than CVX. Note that the dimensio@aised here is larger than that
used for Algorithms 2 and 6 shown in Table |

Figure 8 shows how: of the GWF converged to the optimal as the outer iterations continued. We
see thatu, approaches to zero, which means that the second power constraint is satisfied automatically
while the first power constraint is active. Figure 9 illustrates the capaeitf) @s function of the barrier

constantt.
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SUMMARY OF POWER ALLOCATION ALGORITHMS FOR A MULTIUSERMIMO RELAY SYSTEM. THE SAMPLE RUN TIMES

WERE BASED ON A DESKTOP WITH2.40GHz CPU,TWO USERS EACH WITH TWO ANTENNAS AND A RELAY WITH FOUR

ANTENNAS.
Alg. 1 | Alg. 2 | Alg. 3 | Alg. 4 | Alg. 5 | Alg. 6 | Alg. 7 | Alg. 8 | Alg. 9
SectionNo. I-A I-A 1-B -C -C IV-A IV-A IV-B IV-B
Downlink v v v v v
Uplink v v v v
Max Rate v v v v v
Min Power v v v v
ZFDPC v v
DPC v v v
SIC v v v v
Cyclic Search v v v v
Joint Search v v v v v
Use of GWF v v
SampleRun Time in Sec| 17.10 5.12 4.38 7.44 6.32 8.15 6.91 4.18 3.92
n
X
Fig. 1. Diagram of a multiuser MIMO relay downlink system.
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Fig. 2. Diagram of a multiuser MIMO relay uplink system.
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Fig. 3. Comparison of downlink Algorithms 1-3: Averaged sum rate versus power constraint at relay. Alg. 2-A

is Algorithm 2 using the best out of 20 random initializations. Alg. 2-B is Algorithm 2 using the results from

Algorithm 1 as initializations.
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Fig.4. Comparison of downlink Algorithms 4-5: Averaged total power consumption versus individual rate constraint.

The curve on the top is for the identity relay matrix.
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Fig. 5. Comparison of uplink Algorithms 6-7: Averaged sum rate versus relay power constraint. The curves for

Algorithms 6-7 are identical. The lower curve is for the identity relay matrix.
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Fig. 6. Comparison of uplink Algorithms 8-9: Averaged total power consumption versus individual rate constraint.

The curve on the top is for the identity relay matrix.
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Fig. 7. An example of joint multi-carrier power allocation for downlink multi-user MIMO relay system where
K =2, N=2, M =4andM, = 2. Algorithm 3 was applied with 20 random initializations. The rates shown are

based on a single channel realization for each of the two carriers.
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Fig. 8. Optimal values ofu; and ps as function of the outer loop indexin t = 2™,
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Fig. 9. Optimal value of—J (capacity) as function of the outer loop indexin ¢t = 2.
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